Title of article :
Meromorphic extension of the spherical functions on a class of ordered symmetric spaces
Author/Authors :
Y. Angeli، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
23
From page :
49
To page :
71
Abstract :
We discuss a conjecture of Ólafsson and Pasquale published in (J. Funct. Anal. 181 (2001) 346). This conjecture gives the Bernstein–Sato polynomial associated with the Poisson kernel of the ordered (or non-compactly causal) symmetric spaces. The Bernstein–Sato polynomials allow to locate the singularities of the spherical functions on the considered spaces. We prove that this conjecture does not hold in general, and propose a slight improvement of it. Finally, we prove that the new conjecture holds for a class of ordered symmetric spaces, called both the Makareviˇc spaces of type I, and the satellite cones. © 2004 Elsevier Inc. All rights reserved.
Keywords :
Jordan algebra , Non-compactly causalsymmetric space , symmetric cone , Bernstein–Sato polynomial , spherical function
Journal title :
Journal of Functional Analysis
Serial Year :
2005
Journal title :
Journal of Functional Analysis
Record number :
838923
Link To Document :
بازگشت