Title of article :
Isotropic submanifolds generated by the Maximum Entropy Principle and Onsager reciprocity relations
Author/Authors :
Franco Cardin and Marco Favretti، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
17
From page :
227
To page :
243
Abstract :
We show that the Maximum Entropy Principle (MEP) (Phys. Rev. 106 (Part I and II) (1957) 620–630; Phys. Rev. 108 (1957) 171–630), when considered as a constrained extremization problem, defines in a natural way a Morse Family and a related isotropic (Lagrangian in the finite-dimensional case) submanifold of an infinite-dimensional linear symplectic space. This geometric approach becomes useful when dealing with the MEP with nonlinear constraints and it allows to derive Onsager-like reciprocity relations as a consequence of the isotropy. © 2005 Elsevier Inc. All rights reserved
Keywords :
symplectic geometry , Morse family , Lagrange multipliers , Onsager relations , Maximum entropy principle
Journal title :
Journal of Functional Analysis
Serial Year :
2005
Journal title :
Journal of Functional Analysis
Record number :
838985
Link To Document :
بازگشت