Title of article :
Refined limiting imbeddings for Sobolev spaces of
vector-valued functions
Author/Authors :
Miroslav Krbec، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Abstract :
We prove a refined limiting imbedding theorem of the Brézis–Wainger type in the first critical
case, i.e. s = N
p , for Sobolev spaces Wsp
(RN,E) and Bessel potential spaces Hsp
(RN,E) of
functions with values in a general Banach space E. In particular, the space E may lack the
UMD property.
© 2005 Elsevier Inc. All rights reserved.
Keywords :
Vector-valued functions , Besov spaces , Bessel potential spaces , Lizorkin–Triebel spaces , Exponential Orlicz spaces , Lorentz–Zygmund spaces , Sharp inequalities , Envelopes , Limiting imbeddings , Sobolev spaces
Journal title :
Journal of Functional Analysis
Journal title :
Journal of Functional Analysis