Title of article :
On the existence of universal series by trigonometric system
Author/Authors :
S.A. Episkoposian1، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
15
From page :
169
To page :
183
Abstract :
In this paper we prove the following: let (t) be a continuous function, increasing in [0,∞) and (+0) = 0. Then there exists a series of the form ∞ k=−∞ Ckeikx with ∞ k=−∞ C2 k (|Ck|)<∞, C−k = Ck with the following property: for each ε>0 a weighted function (x), 0< (x) 1, |{x ∈ [0, 2 ] : (x) = 1}|<ε can be constructed, so that the series is universal in the weighted space L1 [0, 2 ] with respect to rearrangements. © 2005 Elsevier Inc. All rights reserved.
Keywords :
Universal series , weighted space , Trigonometric system
Journal title :
Journal of Functional Analysis
Serial Year :
2006
Journal title :
Journal of Functional Analysis
Record number :
839027
Link To Document :
بازگشت