Title of article :
Abelian subalgebras of von Neumann algebras from
flat tori in locally symmetric spaces
Author/Authors :
Guyan Robertson، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Abstract :
Consider a compact locally symmetric space M of rank r, with fundamental group . The
von Neumann algebra VN( ) is the convolution algebra of functions f ∈ 2( ) which act by
left convolution on 2( ). Let T r be a totally geodesic flat torus of dimension r in M and
let 0 Zr be the image of the fundamental group of T r in . Then VN( 0) is a maximal
abelian -subalgebra of VN( ) and its unitary normalizer is as small as possible. If M has
constant negative curvature then the Pukánszky invariant of VN( 0) is ∞.
© 2005 Elsevier Inc. All rights reserved.
Keywords :
von Neumann algebra , Masa , Locally symmetric space
Journal title :
Journal of Functional Analysis
Journal title :
Journal of Functional Analysis