Title of article :
Sharp upper bounds on the number of the scattering poles
Author/Authors :
Plamen Stefanov1، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
32
From page :
111
To page :
142
Abstract :
We study the scattering poles of a compactly supported “black box” perturbations of the Laplacian in Rn, n odd. We prove a sharp upper bound of the counting function N(r) modulo o(rn) in terms of the counting function of the reference operator in the smallest ball around the black box. In the most interesting cases, we prove a bound of the type N(r) Anrn + o(rn) with an explicit An. We prove that this bound is sharp in a few special spherically symmetric cases where the bound turns into an asymptotic formula. © 2005 Elsevier Inc. All rights reserved.
Keywords :
Scattering poles , Resonances , scattering
Journal title :
Journal of Functional Analysis
Serial Year :
2006
Journal title :
Journal of Functional Analysis
Record number :
839040
Link To Document :
بازگشت