Title of article :
Unitary extensions of Hilbert A(D)-modules split
Author/Authors :
Michael Didas، نويسنده , , J?rg Eschmeier، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Abstract :
Let D ⊂ Cn be a relatively compact strictly pseudoconvex open set or a bounded symmetric and circled
domain, and let S denote the Shilov boundary of A(D). Given Hilbert A(D)-modules H,J and K, we
prove that if the A(D)-module structure on H or K extends to a Hilbert C(S)-module structure, then each
short exact sequence 0→H →J →K →0 of Hilbert A(D)-modules splits. In particular, it follows that
every Hilbert C(S)-module viewed as an A(D)-module is projective.
© 2006 Elsevier Inc. All rights reserved.
Keywords :
Strictly pseudoconvex and symmetric domains , Extension groups , Projective objects , Hilbert modules
Journal title :
Journal of Functional Analysis
Journal title :
Journal of Functional Analysis