Title of article :
Equivariant maps and bimodule projections
Author/Authors :
Bernhard G. Bodmann and Vern I. Paulsen، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
13
From page :
495
To page :
507
Abstract :
We construct a counterexample to Solel’s [B. Solel, Contractive projections onto bimodules of von Neumann algebras, J. London Math. Soc. 45 (2) (1992) 169–179] conjecture that the range of any contractive, idempotent, MASA bimodule map on B(H) is necessarily a ternary subalgebra. Our construction reduces this problem to an analogous problem about the ranges of idempotent maps that are equivariant with respect to a group action. Such maps are important to understand Hamana’s theory [M. Hamana, Injective envelopes of C∗-dynamical systems, Tohoku Math. J. 37 (1985) 463–487] of G-injective operator spaces and G-injective envelopes. © 2006 Elsevier Inc. All rights reserved
Keywords :
Injective , Banach–Stone , multipliers , Operator space
Journal title :
Journal of Functional Analysis
Serial Year :
2006
Journal title :
Journal of Functional Analysis
Record number :
839260
Link To Document :
بازگشت