Title of article :
Uncertainty principles for orthonormal sequences
Author/Authors :
Philippe Jaming، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
20
From page :
611
To page :
630
Abstract :
The aim of this paper is to provide complementary quantitative extensions of two results of H.S. Shapiro on the time–frequency concentration of orthonormal sequences in L2(R). More precisely, Shapiro proved that if the elements of an orthonormal sequence and their Fourier transforms are all pointwise bounded by a fixed function in L2(R) then the sequence is finite. In a related result, Shapiro also proved that if the elements of an orthonormal sequence and their Fourier transforms have uniformly bounded means and dispersions then the sequence is finite. This paper gives quantitative bounds on the size of the finite orthonormal sequences in Shapiro’s uncertainty principles. The bounds are obtained by using prolate spheroïdal wave functions and combinatorial estimates on the number of elements in a spherical code. Extensions for Riesz bases and different measures of time–frequency concentration are also given. © 2006 Published by Elsevier Inc.
Keywords :
Hermite functions , Prolate spheroïdal wavefunctions , Riesz basis , Uncertainty principle , Orthonormal basis , Spherical code
Journal title :
Journal of Functional Analysis
Serial Year :
2007
Journal title :
Journal of Functional Analysis
Record number :
839328
Link To Document :
بازگشت