Title of article :
Universal bounds for eigenvalues of the biharmonic operator on Riemannian manifolds
Author/Authors :
Qiaoling Wang and Changyu Xia، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
19
From page :
334
To page :
352
Abstract :
In this paper we consider eigenvalues of the Dirichlet biharmonic operator on compact Riemannian manifolds with boundary (possibly empty) and prove a general inequality for them. By using this inequality, we study eigenvalues of the Dirichlet biharmonic operator on compact domains in a Euclidean space or a minimal submanifold of it and a unit sphere. We obtain universal bounds on the (k + 1)th eigenvalue on such objects in terms of the first k eigenvalues independent of the domains. The estimate for the (k + 1)th eigenvalue of bounded domains in a Euclidean space improves an important inequality obtained recently by Cheng and Yang. © 2006 Elsevier Inc. All rights reserved
Keywords :
Universal bounds , Eigenvalues , biharmonic operator , Sphere , Euclidean space , Minimal submanifolds
Journal title :
Journal of Functional Analysis
Serial Year :
2007
Journal title :
Journal of Functional Analysis
Record number :
839369
Link To Document :
بازگشت