Title of article :
Dissipative operators on Banach spaces
Author/Authors :
Heybetkulu Mustafayev، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
20
From page :
428
To page :
447
Abstract :
A bounded linear operator T on a Banach space is said to be dissipative if etT 1 for all t 0. We show that if T is a dissipative operator on a Banach space, then: (a) limt→∞ etT T =sup{|λ|: λ ∈ σ(T ) ∩ iR}. (b) If σ(T ) ∩ iR is contained in [−iπ/2, iπ/2], then lim t→∞ etT sin T = sup |sin λ|: λ ∈ σ(T ) ∩ iR . Some related problems are also discussed. © 2007 Elsevier Inc. All rights reserved.
Keywords :
Dissipative operator , (Local) spectrum , Fourier transform , Hermitian operator
Journal title :
Journal of Functional Analysis
Serial Year :
2007
Journal title :
Journal of Functional Analysis
Record number :
839418
Link To Document :
بازگشت