Title of article :
Dissipative operators on Banach spaces
Author/Authors :
Heybetkulu Mustafayev، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Abstract :
A bounded linear operator T on a Banach space is said to be dissipative if etT 1 for all t 0. We
show that if T is a dissipative operator on a Banach space, then:
(a) limt→∞ etT T =sup{|λ|: λ ∈ σ(T ) ∩ iR}.
(b) If σ(T ) ∩ iR is contained in [−iπ/2, iπ/2], then
lim
t→∞ etT sin T = sup |sin λ|: λ ∈ σ(T ) ∩ iR .
Some related problems are also discussed.
© 2007 Elsevier Inc. All rights reserved.
Keywords :
Dissipative operator , (Local) spectrum , Fourier transform , Hermitian operator
Journal title :
Journal of Functional Analysis
Journal title :
Journal of Functional Analysis