Title of article :
An extension of a Bourgain–Lindenstrauss–Milman inequality
Author/Authors :
Omer Friedland، نويسنده , , Sasha Sodin، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
6
From page :
492
To page :
497
Abstract :
Let · be a norm on Rn. Averaging (ε1x1, . . . , εnxn) over all the 2n choices of −→ε = (ε1, . . . , εn) ∈ {−1,+1}n, we obtain an expression |||x||| which is an unconditional norm on Rn. Bourgain, Lindenstrauss and Milman [J. Bourgain, J. Lindenstrauss, V.D. Milman, Minkowski sums and symmetrizations, in: Geometric Aspects of Functional Analysis (1986/1987), Lecture Notes in Math., vol. 1317, Springer, Berlin, 1988, pp. 44–66] showed that, for a certain (large) constant η > 1, one may average over ηn (random) choices of −→ε and obtain a norm that is isomorphic to ||| · |||. We show that this is the case for any η >1. © 2007 Elsevier Inc. All rights reserved
Keywords :
Kahane–Khinchin averages , Bourgan–Lindenstrauss–Milman inequality , Unconditional
Journal title :
Journal of Functional Analysis
Serial Year :
2007
Journal title :
Journal of Functional Analysis
Record number :
839480
Link To Document :
بازگشت