Title of article :
Additive invariants on the Hardy space over the polydisc
Author/Authors :
Xiang Fang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
14
From page :
359
To page :
372
Abstract :
In recent years various advances have been made with respect to the Nevanlinna–Pick kernels, especially on the symmetric Fock space, while the development on the Hardy space over the polydisc is relatively slow. In this paper, several results known on the symmetric Fock space are proved for the Hardy space over the polydisc. The known proofs on the symmetric Fock space make essential use of the Nevanlinna–Pick properties. Specifically, we study several integer-valued numerical invariants which are defined on an arbitrary invariant subspace of the vector-valued Hardy spaces over the polydisc. These invariants include the Samuel multiplicity, curvature, fiber dimension, and a few others. A tool used to overcome the difficulty associated with non-Nevanlinna–Pick kernels is Tauberian theory. Published by Elsevier Inc
Keywords :
Hardy space , polydisc , Samuel multiplicity , Curvature , Fiber dimension , Defect operator
Journal title :
Journal of Functional Analysis
Serial Year :
2007
Journal title :
Journal of Functional Analysis
Record number :
839527
Link To Document :
بازگشت