Title of article :
Singular functional differential equations of neutral type
in Banach spaces
Author/Authors :
Said Hadd، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
The well-posedness of a large class of singular partial differential equations of neutral type is discussed.
Here the term singularity means that the difference operator of such equations is nonatomic at zero. This
fact offers many difficulties in applying the usual methods of perturbation theory and Laplace transform
technique and thus makes the study interesting. Our approach is new and it is based on functional analysis
of semigroup of operators in an essential way, and allows us to introduce a new concept of solutions for
such equations. Finally, we study the well-posedness of a singular reaction–diffusion equation of neutral
type in weighted Lebesgue’s spaces.
© 2008 Elsevier Inc. All rights reserved
Keywords :
Neutral equations , Nonatomic operators , semigroup , Banach space
Journal title :
Journal of Functional Analysis
Journal title :
Journal of Functional Analysis