Title of article :
Sufficient enlargements of minimal volume for finite-dimensional normed linear spaces
Author/Authors :
M.I. Ostrovskii، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
31
From page :
589
To page :
619
Abstract :
Let BY denote the unit ball of a normed linear space Y . A symmetric, bounded, closed, convex set A in a finite-dimensional normed linear space X is called a sufficient enlargement for X if, for an arbitrary isometric embedding of X into a Banach space Y , there exists a linear projection P :Y →X such that P(BY ) ⊂ A. The main results of the paper: (1) Each minimal-volume sufficient enlargement is linearly equivalent to a zonotope spanned bymultiples of columns of a totally unimodular matrix. (2) If a finite-dimensional normed linear space has a minimal-volume sufficient enlargement which is not a parallelepiped, then it contains a two-dimensional subspace whose unit ball is linearly equivalent to a regular hexagon
Keywords :
Sufficient enlargement for a normed linear space , Totally unimodularmatrix , Banach space , Space tiling zonotope
Journal title :
Journal of Functional Analysis
Serial Year :
2008
Journal title :
Journal of Functional Analysis
Record number :
839673
Link To Document :
بازگشت