Title of article :
Toeplitz operators and weighted Bergman kernels
Author/Authors :
Miroslav Engli?، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
39
From page :
1419
To page :
1457
Abstract :
For a smoothly bounded strictly pseudoconvex domain, we describe the boundary singularity of weighted Bergman kernels with respect to weights behaving like a power (possibly fractional) of a defining function, and, more generally, of the reproducing kernels of Sobolev spaces of holomorphic functions of any real order. This generalizes the classical result of Fefferman for the unweighted Bergman kernel. Finally, we also exhibit a holomorphic continuation of the kernels with respect to the Sobolev parameter to the entire complex plane. Our main tool are the generalized Toeplitz operators of Boutet de Monvel and Guillemin
Keywords :
Pseudodifferential operator , Toeplitz operator , Bergman kernel , Sobolev space
Journal title :
Journal of Functional Analysis
Serial Year :
2008
Journal title :
Journal of Functional Analysis
Record number :
839702
Link To Document :
بازگشت