Title of article :
Heat kernel analysis on infinite-dimensional Heisenberg groups
Author/Authors :
Bruce K. Driver، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
67
From page :
2395
To page :
2461
Abstract :
We introduce a class of non-commutative Heisenberg-like infinite-dimensional Lie groups based on an abstract Wiener space. The Ricci curvature tensor for these groups is computed and shown to be bounded. Brownian motion and the corresponding heat kernel measures, {νt }t>0, are also studied.We show that these heat kernel measures admit: (1) Gaussian like upper bounds, (2) Cameron–Martin type quasi-invariance results, (3) good Lp-bounds on the corresponding Radon–Nikodym derivatives, (4) integration by parts formulas, and (5) logarithmic Sobolev inequalities. The last three results heavily rely on the boundedness of the Ricci tensor.
Keywords :
quasi-invariance , Heat kernel , Logarithmic Sobolev inequality , Heisenberg group
Journal title :
Journal of Functional Analysis
Serial Year :
2008
Journal title :
Journal of Functional Analysis
Record number :
839737
Link To Document :
بازگشت