Title of article :
Rademacher averages on noncommutative symmetric
spaces
Author/Authors :
Christian Le Merdy، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
Let E be a separable (or the dual of a separable) symmetric function space, let M be a semifinite
von Neumann algebra and let E(M) be the associated noncommutative function space. Let (εk)k 1 be
a Rademacher sequence, on some probability space Ω. For finite sequences (xk)k 1 of E(M), we consider
the Rademacher averages
k εk
⊗xk as elements of the noncommutative function space E(L
∞
(Ω)⊗M)
and study estimates for their norms
k εk
⊗ xk
E calculated in that space. We establish general Khintchine
type inequalities in this context. Then we show that if E is 2-concave,
k εk
⊗ xk
E is equivalent
to the infimum of (
y
∗
k yk)1/2 + (
zkz
∗
k )1/2 over all yk, zk in E(M) such that xk
= yk
+zk for any
k 1. Dual estimates are given when E is 2-convex and has a nontrivial upper Boyd index. In this case,
k εk
⊗ xk
E is equivalent to (
x
∗
k xk)1/2 + (
xkx
∗
k )1/2 . We also study Rademacher averages
i,j εi
⊗εj
⊗xij for doubly indexed families (xij )i,j of E(M).
Keywords :
Noncommutative symmetric function spaces , interpolation , Rademacher averages
Journal title :
Journal of Functional Analysis
Journal title :
Journal of Functional Analysis