Title of article :
Indecomposable representations of quivers
on infinite-dimensional Hilbert spaces
Author/Authors :
Masatoshi Enomoto ، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
We study indecomposable representations of quivers on separable infinite-dimensional Hilbert spaces by
bounded operators.We exhibit several concrete examples and investigate duality theorem between reflection
functors. We also show a complement of Gabriel’s theorem. Let Γ be a finite, connected quiver. If its
underlying undirected graph contains one of extended Dynkin diagrams ˜An (n 0), ˜Dn (n 4), ˜E6, ˜E7
and ˜E8, then there exists an indecomposable representation of Γ on separable infinite-dimensional Hilbert
spaces.
© 2008 Elsevier Inc. All rights reserved.
Keywords :
Quiver , Indecomposable representation , Dynkin diagram , Hilbert space , Reflection functor
Journal title :
Journal of Functional Analysis
Journal title :
Journal of Functional Analysis