Title of article :
A Markov Chain Model for Animal Estrous Cycling Data
Author/Authors :
Zhai، J. نويسنده , , Morris، R. W. نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Abstract :
Estrous cycling data contain sequences of characters (e.g., DPEMD). Each sequence represents an animalʹs estrous cycle, with each character indicating the daily estrous cycle stage. Changes in the estrous cycle pattern, which is determined by estrous stage lengths, can provide information on adverse events. Stage lengths are not directly observable. However interval censored lengths for all but the first and the last stages in a sequence can be extracted from the data. We propose a Markov chain model to approximate the estrous cycling process. The transition probabilities from one stage to another can be derived by conditioning on stage lengths. Assuming Weibull distribution for stage lengths, with the second Weibull parameter depending upon treatment effects and animal-specific random effects, regression models on censored stage lengths are fitted. A Bayesian approach is used for inference on dose effects. The analysis is implemented with MCMC method in WinBUGS. An estrous cycling data set from a National Toxicology Program study is analyzed as an example.
Keywords :
Bayesian inference , Estrous cycle , Markov chain , Weibull
Journal title :
BIOMETRICS (BIOMETRIC SOCIETY)
Journal title :
BIOMETRICS (BIOMETRIC SOCIETY)