Title of article :
Classes of tuples of commuting contractions satisfying
the multivariable von Neumann inequality
Author/Authors :
Anatolii Grinshpan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
We obtain a decomposition for multivariable Schur-class functions on the unit polydisk which, to a certain
extent, is analogous to Agler’s decomposition for functions from the Schur–Agler class. As a consequence,
we show that d-tuples of commuting strict contractions obeying an additional positivity constraint satisfy
the d-variable von Neumann inequality for an arbitrary operator-valued bounded analytic function on the
polydisk. Also, this decomposition yields a necessary condition for solvability of the finite data Nevanlinna–
Pick interpolation problem in the Schur class on the unit polydisk.
© 2008 Elsevier Inc. All rights reserved
Keywords :
Commuting contractions , Unitary dilation , Multivariable Schurclass , Schur–Agler class , Multivariable von Neumann inequality , Scattering system , Nevanlinna–Pick interpolation problem
Journal title :
Journal of Functional Analysis
Journal title :
Journal of Functional Analysis