Title of article :
Classes of tuples of commuting contractions satisfying the multivariable von Neumann inequality
Author/Authors :
Anatolii Grinshpan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
20
From page :
3035
To page :
3054
Abstract :
We obtain a decomposition for multivariable Schur-class functions on the unit polydisk which, to a certain extent, is analogous to Agler’s decomposition for functions from the Schur–Agler class. As a consequence, we show that d-tuples of commuting strict contractions obeying an additional positivity constraint satisfy the d-variable von Neumann inequality for an arbitrary operator-valued bounded analytic function on the polydisk. Also, this decomposition yields a necessary condition for solvability of the finite data Nevanlinna– Pick interpolation problem in the Schur class on the unit polydisk. © 2008 Elsevier Inc. All rights reserved
Keywords :
Commuting contractions , Unitary dilation , Multivariable Schurclass , Schur–Agler class , Multivariable von Neumann inequality , Scattering system , Nevanlinna–Pick interpolation problem
Journal title :
Journal of Functional Analysis
Serial Year :
2009
Journal title :
Journal of Functional Analysis
Record number :
839876
Link To Document :
بازگشت