Title of article :
Invariant subspaces for operator semigroups with commutators of rank at most one
Author/Authors :
Roman Drnov?ek، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
10
From page :
4187
To page :
4196
Abstract :
Let X be a complex Banach space of dimension at least 2, and let S be a multiplicative semigroup of operators on X such that the rank of ST −T S is at most 1 for all {S,T} ⊂ S.We prove that S has a non-trivial invariant subspace provided it is not commutative. As a consequence we show that S is triangularizable if it consists of polynomially compact operators. This generalizes results from [H. Radjavi, P. Rosenthal, From local to global triangularization, J. Funct. Anal. 147 (1997) 443–456] and [G. Cigler, R. Drnovšek, D. Kokol-Bukovšek, T. Laffey, M. Omladiˇc, H. Radjavi, P. Rosenthal, Invariant subspaces for semigroups of algebraic operators, J. Funct. Anal. 160 (1998) 452–465]. © 2009 Elsevier Inc. All rights reserved
Keywords :
Semigroups , Invariant subspaces , Triangularizability
Journal title :
Journal of Functional Analysis
Serial Year :
2009
Journal title :
Journal of Functional Analysis
Record number :
839918
Link To Document :
بازگشت