Title of article :
Rank and regularity for averages over submanifolds
Author/Authors :
Philip T. Gressman، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
33
From page :
1396
To page :
1428
Abstract :
This paper establishes endpoint Lp–Lq and Sobolev mapping properties of Radon-like operators which satisfy a homogeneity condition (similar to semiquasihomogeneity) and a condition on the rank of a matrix related to rotational curvature. For highly degenerate operators, the rank condition is generically satisfied for algebraic reasons, similar to an observation of Greenleaf, Pramanik and Tang [A. Greenleaf, M. Pramanik, W. Tang, Oscillatory integral operators with homogeneous polynomial phases in several variables, J. Funct. Anal. 244 (2) (2007) 444–487] concerning oscillatory integral operators. © 2009 Elsevier Inc. All rights reserved
Keywords :
Radon Transform , Oscillatory integral operator , Rotational curvature
Journal title :
Journal of Functional Analysis
Serial Year :
2009
Journal title :
Journal of Functional Analysis
Record number :
839968
Link To Document :
بازگشت