Title of article :
Schatten class membership of Hankel operators on the unit sphere
Author/Authors :
Quanlei Fang، نويسنده , , Jingbo Xia، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
53
From page :
3082
To page :
3134
Abstract :
Let H2(S) be the Hardy space on the unit sphere S in Cn, n 2. Consider the Hankel operator Hf = (1−P)Mf |H2(S), where the symbol function f is allowed to be arbitrary in L2(S, dσ).We show that for p >2n, Hf is in the Schatten class Cp if and only if f − Pf belongs to the Besov space Bp. To be more precise, the “if” part of this statement is easy. The main result of the paper is the “only if” part. We also show that the membership Hf ∈ C2n implies f −Pf = 0, i.e., Hf = 0. © 2009 Elsevier Inc. All rights reserved
Keywords :
Hankel operator , Schatten class
Journal title :
Journal of Functional Analysis
Serial Year :
2009
Journal title :
Journal of Functional Analysis
Record number :
840021
Link To Document :
بازگشت