Title of article :
Schatten class membership of Hankel operators
on the unit sphere
Author/Authors :
Quanlei Fang، نويسنده , , Jingbo Xia، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
Let H2(S) be the Hardy space on the unit sphere S in Cn, n 2. Consider the Hankel operator Hf =
(1−P)Mf |H2(S), where the symbol function f is allowed to be arbitrary in L2(S, dσ).We show that for
p >2n, Hf is in the Schatten class Cp if and only if f − Pf belongs to the Besov space Bp. To be more
precise, the “if” part of this statement is easy. The main result of the paper is the “only if” part. We also
show that the membership Hf ∈ C2n implies f −Pf = 0, i.e., Hf = 0.
© 2009 Elsevier Inc. All rights reserved
Keywords :
Hankel operator , Schatten class
Journal title :
Journal of Functional Analysis
Journal title :
Journal of Functional Analysis