Title of article :
Interpolation theorems for variable exponent Lebesgue spaces
Author/Authors :
Tengiz Kopaliani، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
11
From page :
3541
To page :
3551
Abstract :
When Hardy–Littlewood maximal operator is bounded on Lp(·)(Rn) space we prove [Lp(·)(Rn), BMO(Rn)]θ = Lq(·)(Rn) where q(·) = p(·)/(1 − θ) and [Lp(·)(Rn),H1(Rn)]θ = Lq(·)(Rn) where 1/q(·) = θ + (1− θ)/p(·). © 2009 Elsevier Inc. All rights reserved.
Keywords :
Hardy space , Variable exponent Lebesgue space , Calderon product , Complex interpolation method
Journal title :
Journal of Functional Analysis
Serial Year :
2009
Journal title :
Journal of Functional Analysis
Record number :
840034
Link To Document :
بازگشت