Title of article :
Heat kernel analysis on semi-infinite Lie groups
Author/Authors :
Tai Melcher، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
41
From page :
3552
To page :
3592
Abstract :
This paper studies Brownian motion and heat kernel measure on a class of infinite dimensional Lie groups. We prove a Cameron–Martin type quasi-invariance theorem for the heat kernel measure and give estimates on the Lp norms of the Radon–Nikodym derivatives. We also prove that a logarithmic Sobolev inequality holds in this setting. © 2009 Elsevier Inc. All rights reserved
Keywords :
Infinite dimensional Lie group , quasi-invariance , Logarithmic Sobolev inequality , Heat kernel measure
Journal title :
Journal of Functional Analysis
Serial Year :
2009
Journal title :
Journal of Functional Analysis
Record number :
840035
Link To Document :
بازگشت