Title of article :
Stability estimate for an inverse problem for the magnetic Schrödinger equation from the Dirichlet-to-Neumann map
Author/Authors :
Mourad Bellassoued، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
35
From page :
161
To page :
195
Abstract :
We consider the problem of stability estimate of the inverse problem of determining the magnetic field entering the magnetic Schrödinger equation in a bounded smooth domain of Rn with input Dirichlet data, from measured Neumann boundary observations. This information is enclosed in the dynamical Dirichletto- Neumann map associated to the solutions of the magnetic Schrödinger equation. We prove in dimension n 2 that the knowledge of the Dirichlet-to-Neumann map for the magnetic Schrödinger equation measured on the boundary determines uniquely the magnetic field and we prove a Hölder-type stability in determining the magnetic field induced by the magnetic potential. © 2009 Elsevier Inc. All rights reserved
Keywords :
Stability estimate , Schr?dinger inverse problem , magnetic field , Dirichlet-to-Neumann map
Journal title :
Journal of Functional Analysis
Serial Year :
2010
Journal title :
Journal of Functional Analysis
Record number :
840057
Link To Document :
بازگشت