Title of article :
Quantization of abelian varieties: Distributional sections
and the transition from Kähler to real polarizations
Author/Authors :
Thomas Baier، نويسنده , , José M. Mour?o ?، نويسنده , , Jo?o P. Nunes، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
We study the dependence of geometric quantization of the standard symplectic torus on the choice of invariant
polarization. Real and mixed polarizations are interpreted as degenerate complex structures. Using
a weak version of the equations of covariant constancy, and the Weil–Brezin expansion to describe distributional
sections, we give a unified analytical description of the quantization spaces for all non-negative
polarizations. The Blattner–Kostant–Sternberg (BKS) pairing maps between half-form corrected quantization
spaces for different polarizations are shown to be transitive and related to an action of Sp(2g,R).
Moreover, these maps are shown to be unitary.
© 2010 Elsevier Inc. All rights reserved.
Keywords :
quantization , Abelian varieties , Theta functions , Bohr–Sommerfeld fibers
Journal title :
Journal of Functional Analysis
Journal title :
Journal of Functional Analysis