Title of article :
The approximation property for spaces of holomorphic functions on infinite dimensional spaces II
Author/Authors :
Sean Dineen، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
16
From page :
545
To page :
560
Abstract :
Let H(U) denote the vector space of all complex-valued holomorphic functions on an open subset U of a Banach space E. Let τω and τδ respectively denote the compact-ported topology and the bornological topology on H(U). We show that if E is a Banach space with a shrinking Schauder basis, and with the property that every continuous polynomial on E is weakly continuous on bounded sets, then (H(U), τω) and (H(U), τδ) have the approximation property for every open subset U of E. The classical space c0, the original Tsirelson space T ∗ and the Tsirelson∗–James space T ∗ J are examples of Banach spaces which satisfy the hypotheses of our main result. Our results are actually valid for Riemann domains. © 2010 Elsevier Inc. All rights reserved
Keywords :
holomorphic function , Banach space , Schauder basis , Pseudoconvex Riemann domain
Journal title :
Journal of Functional Analysis
Serial Year :
2010
Journal title :
Journal of Functional Analysis
Record number :
840238
Link To Document :
بازگشت