Title of article :
Revisiting an idea of Brézis and Nirenberg
Author/Authors :
Chun-Hsiung Hsia، نويسنده , , Chang-Shou Lin، نويسنده , , Hidemitsu Wadade، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
34
From page :
1816
To page :
1849
Abstract :
Let n 3 and Ω be a C1 bounded domain in Rn with 0 ∈ ∂Ω. Suppose ∂Ω is C2 at 0 and the mean curvature of ∂Ω at 0 is negative, we prove the existence of positive solutions for the equation: ⎧⎨⎩ u +λu n+2 n−2 + u2∗(s)−1 |x|s =0 inΩ, u =0 on∂Ω, (0.1) where λ > 0, 0 < s <2, 2∗(s) = 2(n−s) n−2 and n 4. For n = 3, the existence result holds for 0 < s <1. Under the same assumption of the domain Ω, for p 2∗(s) − 1, we also prove the existence of a positive solution for the following equation: ⎧⎨⎩ u −λup + u2∗(s)−1 |x|s =0 inΩ, u =0 on∂Ω, (0.2) where λ>0 and 1 p < n n− 2 . © 2010 Elsevier Inc. All rights reserved
Keywords :
Caffarelli–Kohn–Nirenberg inequality , Nonlinear elliptic equation , Hardy–Sobolev critical exponent
Journal title :
Journal of Functional Analysis
Serial Year :
2010
Journal title :
Journal of Functional Analysis
Record number :
840282
Link To Document :
بازگشت