Title of article :
Revisiting an idea of Brézis and Nirenberg
Author/Authors :
Chun-Hsiung Hsia، نويسنده , , Chang-Shou Lin، نويسنده , , Hidemitsu Wadade، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
Let n 3 and Ω be a C1 bounded domain in Rn with 0 ∈ ∂Ω. Suppose ∂Ω is C2 at 0 and the mean
curvature of ∂Ω at 0 is negative, we prove the existence of positive solutions for the equation:
⎧⎨⎩
u +λu
n+2
n−2 +
u2∗(s)−1
|x|s =0 inΩ,
u =0 on∂Ω,
(0.1)
where λ > 0, 0 < s <2, 2∗(s) = 2(n−s)
n−2 and n 4. For n = 3, the existence result holds for 0 < s <1.
Under the same assumption of the domain Ω, for p 2∗(s) − 1, we also prove the existence of a positive
solution for the following equation:
⎧⎨⎩
u −λup +
u2∗(s)−1
|x|s =0 inΩ,
u =0 on∂Ω,
(0.2)
where
λ>0 and 1 p <
n
n− 2
.
© 2010 Elsevier Inc. All rights reserved
Keywords :
Caffarelli–Kohn–Nirenberg inequality , Nonlinear elliptic equation , Hardy–Sobolev critical exponent
Journal title :
Journal of Functional Analysis
Journal title :
Journal of Functional Analysis