Title of article :
Tracial algebras and an embedding theorem
Author/Authors :
Tim Netzer، نويسنده , , Andreas Thom، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
22
From page :
2939
To page :
2960
Abstract :
We prove that every positive trace on a countably generated ∗-algebra can be approximated by positive traces on algebras of generic matrices. This implies that every countably generated tracial ∗-algebra can be embedded into a metric ultraproduct of generic matrix algebras. As a particular consequence, every finite von Neumann algebra with separable pre-dual can be embedded into an ultraproduct of tracial ∗-algebras, which as ∗-algebras embed into a matrix-ring over a commutative algebra. © 2010 Elsevier Inc. All rights reserved
Keywords :
Ultraproduct , Connes embedding problem , Von Neumann algebra , Tracial algebras , Convex geometry
Journal title :
Journal of Functional Analysis
Serial Year :
2010
Journal title :
Journal of Functional Analysis
Record number :
840323
Link To Document :
بازگشت