Title of article :
Local and global well-posedness for the 2D generalized Zakharov–Kuznetsov equation
Author/Authors :
Felipe Linares، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
26
From page :
1060
To page :
1085
Abstract :
This paper addresses well-posedness issues for the initial value problem (IVP) associated with the generalized Zakharov–Kuznetsov equation, namely, ut + ∂x u +ukux = 0, (x, y) ∈ R2, t >0, u(x, y, 0) = u0(x, y). For 2 k 7, the IVP above is shown to be locally well posed for data in Hs (R2), s > 3/4. For k 8, local well-posedness is shown to hold for data in Hs (R2), s >sk, where sk = 1−3/(2k−4). Furthermore, for k 3, if u0 ∈ H1(R2) and satisfies u0 H1 1, then the solution is shown to be global in H1(R2). For k = 2, if u0 ∈ Hs (R2), s > 53/63, and satisfies u0 L2 < √ 3 ϕ L2, where ϕ is the corresponding ground state solution, then the solution is shown to be global in Hs (R2). © 2010 Elsevier Inc. All rights reserved
Keywords :
Global well-posedness , Zakharov–Kuznetsov equation , Local well-posedness
Journal title :
Journal of Functional Analysis
Serial Year :
2011
Journal title :
Journal of Functional Analysis
Record number :
840372
Link To Document :
بازگشت