Title of article :
A Dixmier–Douady theorem for Fell algebras
Author/Authors :
Astrid an Huef، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
65
From page :
1304
To page :
1368
Abstract :
We generalise the Dixmier–Douady classification of continuous-trace C ∗-algebras to Fell algebras. To do so, we show that C ∗-diagonals in Fell algebras are precisely abelian subalgebras with the extension property, and use this to prove that every Fell algebra is Morita equivalent to one containing a diagonal subalgebra. We then use the machinery of twisted groupoid C ∗-algebras and equivariant sheaf cohomology to define an analogue of the Dixmier–Douady invariant for Fell algebras, and to prove our classification theorem. © 2010 Elsevier Inc. All rights reserved.
Keywords :
Sheaf cohomology , Groupoid , Brauer group , Dixmier–Douady , Fell algebra , Extension property
Journal title :
Journal of Functional Analysis
Serial Year :
2011
Journal title :
Journal of Functional Analysis
Record number :
840387
Link To Document :
بازگشت