Title of article :
Factorization of Blaschke products and ideal theory in H ∞
Author/Authors :
Kei Ji Izuchi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
62
From page :
2086
To page :
2147
Abstract :
Let H ∞ be the Banach algebra of bounded analytic functions on the open unit disk D. Let G be the union set of all nontrivial Gleason parts in the maximal ideal space of H ∞. Let E be a nonvoid compact and totally disconnected subset of G and nE be a bounded numbering function on E. We characterize nE for which there is a closed ideal I in H ∞ such that Z(I ) = E and ord(I, x) = nE(x) for every x ∈ E. Let I1, I2, . . . , Ik be closed ideals in H ∞ satisfying Z(Ii ) ⊂ G for 1 i k. We prove that k i=1 Ii = { k i=1 fi : fi ∈ Ii , 1 i k} is a closed ideal. A local ideal theory in H ∞ plays an important role to prove our results. © 2010 Elsevier Inc. All rights reserved
Keywords :
Interpolating Blaschke product , Carleson–Newman Blaschke product , Algebra of bounded analyticfunctions , Gleason part , Ideal theory , Big disk algebra
Journal title :
Journal of Functional Analysis
Serial Year :
2011
Journal title :
Journal of Functional Analysis
Record number :
840406
Link To Document :
بازگشت