Title of article :
Approximately spectrum-preserving maps
Author/Authors :
J. Alaminos، نويسنده , , J. Extremera، نويسنده , , A.R. Villena، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
34
From page :
233
To page :
266
Abstract :
Let X and Y be superreflexive complex Banach spaces and let B(X) and B(Y ) be the Banach algebras of all bounded linear operators on X and Y , respectively. If a bijective linear map Φ :B(X)→B(Y ) almost preserves the spectra, then it is almost multiplicative or anti-multiplicative. Furthermore, in the case where X = Y is a separable complex Hilbert space, such a map is a small perturbation of an automorphism or an anti-automorphism. © 2011 Elsevier Inc. All rights reserved.
Keywords :
Kaplansky’s problem , Spectrum preservingmap , Homomorphism , Approximately multiplicative functional , Pseudospectrum , Gleason–Kahane– ? Zelazko theorem , Spectrum , Anti-homomorphism , Standard operator algebra , Approximately multiplicative map
Journal title :
Journal of Functional Analysis
Serial Year :
2011
Journal title :
Journal of Functional Analysis
Record number :
840482
Link To Document :
بازگشت