Title of article :
On the Weyl–Heisenberg frames generated by simple functions
Author/Authors :
Xing-Gang He، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
18
From page :
1010
To page :
1027
Abstract :
Let φ(x) = ∞ n=0 cnχE(x − n) with {cn}∞ n=0 ∈ l1, and let (φ, a, 1), 0 < a 1 be a Weyl–Heisenberg system {e2πimxφ(x − na): m,n ∈ Z}. We show that if E = [0, 1] (and some modulo extension of E), then (φ, a, 1) is a frame for each 0 < a 1 (for certain a, respectively) if and only if the analytic function H(z) = ∞ n=0 cnzn has no zero on the unit circle {z: |z| = 1}. These results extend the case of Casazza and Kalton (2002) [6] that φ(x) = k i=1 χ[0,1](x −ni ) and a = 1, which brought together the frame theory and the function theory on the closed unit disk. Our techniques of proofs are based on the Zak transform and the distribution of fractional parts of {na} n∈Z. © 2011 Elsevier Inc. All rights reserved.
Keywords :
Modulation , translation , Zero , Frame , Analytic Function , Fractional part , Zak transform
Journal title :
Journal of Functional Analysis
Serial Year :
2011
Journal title :
Journal of Functional Analysis
Record number :
840508
Link To Document :
بازگشت