Title of article :
Isoperimetric control of the Steklov spectrum
Author/Authors :
Bruno Colbois، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
16
From page :
1384
To page :
1399
Abstract :
We prove that the normalized Steklov eigenvalues of a bounded domain in a complete Riemannian manifold are bounded above in terms of the inverse of the isoperimetric ratio of the domain. Consequently, the normalized Steklov eigenvalues of a bounded domain in Euclidean space, hyperbolic space or a standard hemisphere are uniformly bounded above. On a compact surface with boundary, we obtain uniform bounds for the normalized Steklov eigenvalues in terms of the genus. We also establish a relationship between the Steklov eigenvalues of a domain and the eigenvalues of the Laplace–Beltrami operator on its boundary hypersurface. © 2011 Elsevier Inc. All rights reserved.
Keywords :
Dirichlet-to-Neumann map , Upper bounds , Isoperimetric ratio , Steklov eigenvalues
Journal title :
Journal of Functional Analysis
Serial Year :
2011
Journal title :
Journal of Functional Analysis
Record number :
840521
Link To Document :
بازگشت