Title of article :
Rosenthal inequalities in noncommutative symmetric spaces
Author/Authors :
Sjoerd Dirksen، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
36
From page :
2890
To page :
2925
Abstract :
We give a direct proof of the ‘upper’ Khintchine inequality for a noncommutative symmetric (quasi-)Banach function space with nontrivial upper Boyd index. This settles an open question of C. Le Merdy and the fourth named author (Le Merdy and Sukochev, 2008 [24]). We apply this result to derive a version of Rosenthal’s theorem for sums of independent random variables in a noncommutative symmetric space. As a result we obtain a new proof of Rosenthal’s theorem for (Haagerup) Lp-spaces. © 2011 Elsevier Inc. All rights reserved.
Keywords :
Khintchine inequalities , Burkholder–Gundy inequalities , Rosenthal inequalities , Noncommutativesymmetric spaces
Journal title :
Journal of Functional Analysis
Serial Year :
2011
Journal title :
Journal of Functional Analysis
Record number :
840574
Link To Document :
بازگشت