Title of article :
Gradient estimate for solutions to Poisson equations in metric measure spaces
Author/Authors :
Renjin Jiang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
36
From page :
3549
To page :
3584
Abstract :
Let (X, d) be a complete, pathwise connected metric measure space with a locally Ahlfors Q-regular measure μ, whereQ>1. Suppose that (X, d,μ) supports a (local) (1, 2)-Poincaré inequality and a suitable curvature lower bound. For the Poisson equation u = f on (X, d,μ), Moser–Trudinger and Sobolev inequalities are established for the gradient of u. The local Hölder continuity with optimal exponent of solutions is obtained. © 2011 Elsevier Inc. All rights reserved
Keywords :
Poincaré inequality , Poisson equation , Sobolev inequality , curvature , Moser–Trudinger inequality , Riesz potential
Journal title :
Journal of Functional Analysis
Serial Year :
2011
Journal title :
Journal of Functional Analysis
Record number :
840596
Link To Document :
بازگشت