Title of article :
Determining a first order perturbation of the biharmonic operator by partial boundary measurements
Author/Authors :
Katsiaryna Krupchyk، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
21
From page :
1781
To page :
1801
Abstract :
We consider an operator 2+A(x) ·D+q(x) with the Navier boundary conditions on a bounded domain in Rn, n 3.We show that a first order perturbation A(x) ·D+q can be determined uniquely by measuring the Dirichlet-to-Neumann map on possibly very small subsets of the boundary of the domain. Notice that the corresponding result does not hold in general for a first order perturbation of the Laplacian. © 2011 Elsevier Inc. All rights reserved.
Keywords :
Inverse problem , Partial data , biharmonic
Journal title :
Journal of Functional Analysis
Serial Year :
2012
Journal title :
Journal of Functional Analysis
Record number :
840661
Link To Document :
بازگشت