Title of article :
Smoothing estimates of 2d incompressible Navier–Stokes equations in bounded domains with applications
Author/Authors :
Lingbing He، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
35
From page :
3430
To page :
3464
Abstract :
Motivated by the study on the uniqueness problem of the coupled model, in this paper, we revisit 2d incompressible Navier–Stokes equations in bounded domains. In fact, we establish some new smoothing estimates to the Leray solution based on the spectral analysis of Stokes operator. To understand well these estimates, on one hand, we establish some new Brezis–Waigner type inequalities in general domain and in any dimension and disclose the connection between both of them. On the other hand, we show that these new estimates can be applied to prove the existence and uniqueness of the weak solutions for two coupled models: Boussinesq system with partial viscosity (no dissipation for the temperature) and Fluid/Particle system, in two dimension and in bounded domains. © 2012 Elsevier Inc. All rights reserved.
Keywords :
Navier–Stokes equation , Smoothing estimates , Brezis–Waigner inequality , Uniqueness of weak solution
Journal title :
Journal of Functional Analysis
Serial Year :
2012
Journal title :
Journal of Functional Analysis
Record number :
840710
Link To Document :
بازگشت