Title of article :
The global existence and convergence of the Calabi flow on Cn/Zn +iZn ✩
Author/Authors :
Renjie Feng، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
18
From page :
1129
To page :
1146
Abstract :
In this note, we study the long time existence of the Calabi flow on X = Cn/Zn + iZn. Assuming the uniform bound of the total energy, we establish the non-collapsing property of the Calabi flow by using Donaldson’s estimates and Streets’ regularity theorem. Next we show that the curvature is uniformly bounded along the Calabi flow on X when the dimension is 2, partially confirming Chen’s conjecture. Moreover, we show that the Calabi flow exponentially converges to the flat Kähler metric for arbitrary dimension if the curvature is uniformly bounded, partially confirming Donaldson’s conjecture. © 2012 Elsevier Inc. All rights reserved
Keywords :
Calabi flow , Global existence and convergence
Journal title :
Journal of Functional Analysis
Serial Year :
2012
Journal title :
Journal of Functional Analysis
Record number :
840807
Link To Document :
بازگشت