Abstract :
In this paper, by using Leray–Schauder degree arguments and critical point theory for convex, lower
semicontinuous perturbations of C1-functionals, we obtain existence of classical positive radial solutions
for Dirichlet problems of type
div
∇v
1 − |∇v|2
+f
|x|, v
=0 inB(R), v =0 on∂B(R).
Here, B(R) = {x ∈ RN: |x|
Keywords :
Dirichlet problem , positive radial solutions , Mean curvature operator , Minkowski space , Leray–Schauderdegree , Szulkin’s critical point theory
Journal title :
Journal of Functional Analysis
Journal title :
Journal of Functional Analysis