Title of article :
Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space
Author/Authors :
Cristian Bereanu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
18
From page :
270
To page :
287
Abstract :
In this paper, by using Leray–Schauder degree arguments and critical point theory for convex, lower semicontinuous perturbations of C1-functionals, we obtain existence of classical positive radial solutions for Dirichlet problems of type div ∇v 1 − |∇v|2 +f |x|, v =0 inB(R), v =0 on∂B(R). Here, B(R) = {x ∈ RN: |x|
Keywords :
Dirichlet problem , positive radial solutions , Mean curvature operator , Minkowski space , Leray–Schauderdegree , Szulkin’s critical point theory
Journal title :
Journal of Functional Analysis
Serial Year :
2013
Journal title :
Journal of Functional Analysis
Record number :
840910
بازگشت