Title of article :
Anticipating stochastic 2D Navier–Stokes equations
Author/Authors :
Salah Mohammed، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
In this article, we consider a two-dimensional stochastic Navier–Stokes equation (SNSE) on a smooth
bounded domain, driven by affine-linear multiplicative white noise and with random initial conditions and
Dirichlet boundary conditions. The random initial condition is allowed to anticipate the forcing noise. Our
main objective is to prove the existence and uniqueness of the solution to the SNSE under sufficient Malliavin
regularity of the initial condition. To this end we employ anticipating calculus ideas.
© 2013 Elsevier Inc. All rights reserved
Keywords :
Malliavin Sobolev space , Stokes operator , Skorohod integral , Stratonovich differential , Malliavin derivative , Galerkin approximations , Stochastic Navier–Stokes , Dirichlet boundary condition , a priori estimates , Anticipating initial condition
Journal title :
Journal of Functional Analysis
Journal title :
Journal of Functional Analysis