Title of article :
Existence en temps grand pour des équations
de Klein–Gordon à petite donnée initiale sur
une structure de Toeplitz
Author/Authors :
Rafik Imekraz، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
We prove a long time existence, of order C(r)ε
−r for all r 3, for small solutions, of order ε 1, in
high Sobolev norms of Klein–Gordon equation with Hamiltonian nonlinearities. Manifolds studied are endowed
with Toeplitz structures in the sense of Boutet de Monvel and Guillemin. We also make a geometric
assumption about periodicity of the Toeplitz pseudo-differential operator Hamiltonian flow. This ensures a
useful spectral localization. Our approach follows Delort and Szeftel’s and Bambusi, Delort, Grebert and
Szeftel’s works on the spheres and Zoll manifolds and uses Birkhoff normal forms at any order. The contextof Toeplitz structures allows us to generalize all the previous cases (torus, spheres and Zoll manifolds) and
to deal with new linearities involving Szegö projectors.
Keywords :
Zoll manifold , Toeplitz structure , Klein–Gordon , Normal form , Nonlinear , Hamiltonian
Journal title :
Journal of Functional Analysis
Journal title :
Journal of Functional Analysis