Title of article :
BOUNDING THE DOMINATION NUMBER OF A TREE IN TERMS OF ITS ANNIHILATION NUMBER
Author/Authors :
دهگردي، نسرين نويسنده Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, I.R. Iran Dehgardi, N. , نوروزيان، س. نويسنده Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, I.R. Iran Norouzian, S. , شيخ الاسلامي، س. م. نويسنده Department of Mathematics, Research Group of Processing and Communication Azarbaijan Shahid Madani University, Tabriz, I.R. Iran Sheikholeslami, S. M.
Issue Information :
فصلنامه با شماره پیاپی 0 سال 2013
Pages :
8
From page :
9
To page :
16
Abstract :
A set S of vertices in a graph G is a dominating set if every vertex of V - S is adjacent to some vertex in S. The domination number (G) is the minimum cardinality of a dominating set in G. The annihilation number a(G) is the largest integer k such that the sum of the first k terms of the non-decreasing degree sequence of G is at most the number of edges in G. In this paper, we show that for any tree T of order n  2, (T)  3a(T)+2 4 , and we characterize the trees achieving this bound.
Journal title :
Transactions on Combinatorics
Serial Year :
2013
Journal title :
Transactions on Combinatorics
Record number :
842147
Link To Document :
بازگشت