Title of article :
Robust Estimating Functions and Bias Correction for Longitudinal Data Analysis
Author/Authors :
Zhu، Min-Ru نويسنده , , Wang، You-Gan نويسنده , , Lin، Xu نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Abstract :
Robust methods are useful in making reliable statistical inferences when there are small deviations from the model assumptions. The widely used method of the generalized estimating equations can be "robustified" by replacing the standardized residuals with the M-residuals. If the Pearson residuals are assumed to be unbiased from zero, parameter estimators from the robust approach are asymptotically biased when error distributions are not symmetric. We propose a distribution-free method for correcting this bias. Our extensive numerical studies show that the proposed method can reduce the bias substantially. Examples are given for illustration.
Keywords :
Robust estimation , bias , estimating functions , M-estimation , Longitudinal data
Journal title :
BIOMETRICS (BIOMETRIC SOCIETY)
Journal title :
BIOMETRICS (BIOMETRIC SOCIETY)