Title of article :
Robust Estimating Functions and Bias Correction for Longitudinal Data Analysis
Author/Authors :
Zhu، Min-Ru نويسنده , , Wang، You-Gan نويسنده , , Lin، Xu نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
-683
From page :
684
To page :
0
Abstract :
Robust methods are useful in making reliable statistical inferences when there are small devi­ations from the model assumptions. The widely used method of the generalized estimating equations can be "robustified" by replacing the standardized residuals with the M-residuals. If the Pearson residuals are assumed to be unbiased from zero, parameter estimators from the robust approach are asymptotically biased when error distributions are not symmetric. We propose a distribution-free method for correcting this bias. Our extensive numerical studies show that the proposed method can reduce the bias substantially. Examples are given for illustration.
Keywords :
Robust estimation , bias , estimating functions , M-estimation , Longitudinal data
Journal title :
BIOMETRICS (BIOMETRIC SOCIETY)
Serial Year :
2005
Journal title :
BIOMETRICS (BIOMETRIC SOCIETY)
Record number :
84235
Link To Document :
بازگشت