Title of article :
Bayesian Inference for Stochastic Kinetic Models Using a Diffusion Approximation
Author/Authors :
Golightly، A. نويسنده , , Wilkinson، D. J. نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
-780
From page :
781
To page :
0
Abstract :
This article is concerned with the Bayesian estimation of stochastic rate constants in the context of dynamic models of intracellular processes. The underlying discrete stochastic kinetic model is replaced by a diffusion approximation (or stochastic differential equation approach) where a white noise term models stochastic behavior and the model is identified using equispaced time course data. The estimation framework involves the introduction of m - 1 latent data points between every pair of observations. MCMC methods are then used to sample the posterior distribution of the latent process and the model param­eters. The methodology is applied to the estimation of parameters in a prokaryotic autoregulatory gene network.
Keywords :
Bayesian inference , Missing data , Nonlinear diffusion , Stochastic differential equation , Markov chain Monte Carlo
Journal title :
BIOMETRICS (BIOMETRIC SOCIETY)
Serial Year :
2005
Journal title :
BIOMETRICS (BIOMETRIC SOCIETY)
Record number :
84245
Link To Document :
بازگشت