Title of article :
Supporting User-Subjective Categorization With Self-Organizing Maps and Learning Vector Quantization
Author/Authors :
Dina Goren-Bar and Tsvi Kuflik، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2005
Pages :
11
From page :
345
To page :
355
Abstract :
Today, most document categorization in organizations is done manually. We save at work hundreds of files and e-mail messages in folders every day. While automatic document categorization has been widely studied, much challenging research still remains to support usersubjective categorization. This study evaluates and compares the application of self-organizing maps (SOMs) and learning vector quantization (LVQ) with automatic document classification, using a set of documents from an organization, in a specific domain, manually classified by a domain expert. After running the SOM and LVQ we requested the user to reclassify documents that were misclassified by the system. Results show that despite the subjective nature of human categorization, automatic document categorization methods correlate well with subjective, personal categorization, and the LVQ method outperforms the SOM. The reclassification process revealed an interesting pattern: About 40% of the documents were classified according to their original categorization, about 35% according to the system’s categorization (the users changed the original categorization), and the remainder received a different (new) categorization. Based on these results we conclude that automatic support for subjective categorization is feasible; however, an exact match is probably impossible due to the users’ changing categorization behavior
Journal title :
Journal of the American Society for Information Science and Technology
Serial Year :
2005
Journal title :
Journal of the American Society for Information Science and Technology
Record number :
843908
Link To Document :
بازگشت