Title of article :
Relations Between the Continuous and the Discrete Lotka Power Function
Author/Authors :
L. Egghe، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2005
Pages :
5
From page :
664
To page :
668
Abstract :
The discrete Lotka power function describes the number of sources (e.g., authors) with n 1, 2, 3, . . . items (e.g., publications). As in econometrics, informetrics theory requires functions of a continuous variable j, replacing the discrete variable n. Now j represents item densities instead of number of items. The continuous Lotka power function describes the density of sources with item density j. The discrete Lotka function one obtains from data, obtained empirically; the continuous Lotka function is the one needed when one wants to apply Lotkaian informetrics, i.e., to determine properties that can be derived from the (continuous) model. It is, hence, important to know the relations between the two models. We show that the exponents of the discrete Lotka function (if not too high, i.e., within limits encountered in practice) and of the continuous Lotka function are approximately the same. This is important to know in applying theoretical results (from the continuous model), derived from practical data.
Journal title :
Journal of the American Society for Information Science and Technology
Serial Year :
2005
Journal title :
Journal of the American Society for Information Science and Technology
Record number :
843936
Link To Document :
بازگشت